シラバス情報

授業方法	講義・実験・実習		
系 列	自動車概論		
科目名	パワーエレクトロニクス		
必修・選択	必修科目 · 選択科目		
対象学科	一級自動車整備科		
年次学期・曜日・時限	4年前期 ・ 金曜日 ・ 1・2・3・4時限		
時 限 数	2 6 時限(期末試験を除く)		
担当教員名	板垣 潮		
実務経験	有・無国土交通省に認証された事業場における保守・点検・分解・組立など自動車整備士としての経験を活かし、整備を行う上で必要となる、パワーエレクトロニクス技術とアクチュエータについての講義を実施する。		
授業の目的	自動車に使用されるアクチュエータの作動及び、作動の為のパワーエレクトロニク スによる、電気の種類や電圧の変換について理解する。		
テキスト	① 一級自動車整備士エンジン電子制御装置 ② 次世代自動車システム		
授業回数	テーマ	内容・方法等	使用テキスト 範囲
第1~2回	パワーエレクトロニクスとは。 駆動用モータへの利用について。	電気の変換技術についての概要とインバータとコンバータの回路構成について講義する。	② p 41-56
第3~4回	スイッチング駆動アクチュエータの 種類、回路構造・機能 1	アクチュエータの異常検知、回路点検に関する考え方について。プラス駆動、マイナス駆動、プランジャ式ソレノイドバルブ(プラス、マイナス駆動)警告灯、について解説。	①P120-137
第 5 ~ 6 回	スイッチング駆動アクチュエータの 種類、回路構造・機能 2	フューエルポンプ用 D C ブラシモータのモータスイッチングリレー、 インジェクタ、イグニションコイルの回路構成、信号形態、異常検知、回 路点検、電力形態について解説。	①P137-163
第7~8回	リニア駆動アクチュエータの 種類、回路構造・機能1	リニア・ソレノイド・バルブ、リニア D C ブラシ・モータ (プラス駆動)の回路構成、信号形態、異常検知、回路点検、電力形態について解説。	①P164-187
第 9 ~ 10 回	リニア駆動アクチュエータの 種類、回路構造・機能 2	リニアDCブラシ・モータ(PWM駆動)の回路構成、 信号形態、異常検知、回路点検、電力形態について解 説。	①P187-193
第 11 ~12 回	リニア駆動アクチュエータの 種類、回路構造・機能3	リニアDCブラシレス・モータの回路構成、信号形態、 異常検知、回路点検、電力形態について解説。	①P193-199
第 13 回	リニア駆動アクチュエータの 種類、回路構造・機能4	ステッピング・モータの回路構成、信号形態、異常検 知、回路点検、電力形態について解説。	①P199-205
	期末試験	第1回〜第13回までの授業内容に関する 筆記試験	

到達目標	アクチュエータの種類、回路構成、信号形態、異常検知範囲、回路点検方法を修得する。アクチュエータの作動における電源の形態を理解する。	
成績評価方法	平常点(小テスト、レポートやノートの提出とその評価、出席及び授業態度)、期末試験を合算して行う。	
定期試験受験資格	開講された全時限に出席し、レポート・ノートの提出が完了している者。 欠席した時限がある場合は、補講も完了している者。	
成績評価基準	成績評価は、期末試験の点数が50点以上を満足した上で、100点を満点とする整数について、次の割合で行う。 期末試験の点数 80% 平常点 20% 上記の割合によって学期末の評点が70点以上である場合、以下により評価する。 70~79点=良、80~89点=優、90点以上=秀 70点未満の場合、再試験を行い、試験点のみで70点以上のとき履修を認定し、成績は70点=良とする。	
成績評価できない 場合の基準	全講義を終了時点の出席率が50%を満たしていない場合、 又は、成績評価が70点未満の場合。	